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Summary. The paper presents a novel easy-to-use iterative calibration algorithm for a magnetic 

field estimation accuracy improvement, which can be successfully applied to the estimation of a 3-axis 

magnetometer biases and scale factors of the each axis, extended to estimate non-linearity and non-

orthogonality corrections. The theory is based on the neural network that creates an inverse function 

the uncalibrated sensor’s transfer function. Learning process of the neural network uses a gradient 

methodology applying total differential on the scalar error equation. The analyzed theoretical 

principles are supplemented by simulations and experimental measurements. The performed 

simulations and experiments confirmed that the algorithm successfully converges to a good estimation 

of the calibration constants. Other advantage of this methodology is that the calibration procedure is 

based on the attitude independent sensor discrete random rotation in the 3D space without the need of 

any non-magnetic calibration platforms. Advantages of this method compared with others lie not only 

in the simplicity of the presented algorithm, sensor attitude independency, measurement repeatability 

and no need of non-magnetic calibration platform utilization, but also in the speed, precision, 

undemandingness and comfort of the presented calibration procedure, which lead to the effective 

magnetometer calibration constants determination and calibration errors reduction. 
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1. INTRODUCTION 

 

Calibration of magnetic field sensors leads to the significant improvement of the sensor’s accuracy, 

therefore many authors have developed various calibration methods for calibration constants 

determination [1-5,7]. The goal of the presented calibration methodology is to derive an easy-to-use 

calibration algorithm that can be used for a magnetic field estimation accuracy improvement. The 

paper presents a novel iterative calibration algorithm, which can be successfully applied to the 

estimation of a 3-axis magnetometer biases and scale factors of the each axis, extended to the 

estimation of non-linearity and nonorthogonality corrections. 

 

 

2. THEORY 
 

The calibration methodology is based on the one-layer feedforward neural network consisting of 

three adaptive elements, learning mode for the network training and working mode used for measured 

data correction. The neural network creates an inverse sensor’s transfer function of the sensor. Post-

proccesing is used for calibration. In first step magnetometer data are measured and then these data are 

used as a training set. This set of data are used repeatedly. Considering a 3-axial sensor of vector field 

with the bias, sensitivity, linearity and orthogonality errors, then during the repeated measurements we 

get for every step of measurement normalized xk, yk and zk values representing uncalibrated almost 

orthogonal decomposition of the measured field vector in x, y and z axis, the scalar value T of which 

can be calculated as: 
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     222 kkkk zyxT       (1) 

The error ε can be hence defined as a difference between the true scalar value of the magnetic 

induction vector normalized to 1, and the calculated value of the Tk of the given k step: 

 

 221 kk T        (2) 

 

For the each step of calibration the measured data are corrected using partial calibration constants for 

every step of the learning process. As the inversed model the Chebyshew series supplemented by 

orthogonal correction for small deviations of angles was used: 
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Where T0 – T5 is expansion to Chebyshew series and A, B, C, D, E, F and O are coefficient which the 

neural network are trying to learn. First six series of Chebyshews polynomials for x – channel:  
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The learning process of calibration constants is based on the gradient methodology, thus application of 

the absolute differential on the error equation (2), resulting into iterative equation, based on which 

corrected values of the measured orthogonal decomposition of the field vector in the each step are 

calculated. The same equations for channel y and are defined. We can use expansion to higher series 

using the recurrence formula:  

 

     xTxxTxT nnn 11 2        (5) 

 

The learning process of the linearity calibration constants of 5. series Fx, Fy and Fz is based on  

following equations: 
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where α constant influences stability and velocity of the learning process convergence. Similarly for 

calibration constants of 4. series Ex, Ey and Ez    
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For Dx, Dy and Dz  calibration constants:  
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For Cx, Cy and Cz  calibration constants:  
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Sensitivity calibration constants marked as Bx, By and Bz can be calculated using equations: 
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For bias calibration constants Ax, Az and Az we can write 

equations: 
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and orthogonality calibration constants Ox, Oy and Oz can be determined as: 
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3. MODELING AND SIMULATIONS 

 

For the theoretical principles verification the mathematical model representing random and discrete 

sensor rotation in the homogeneous field with the defined bias, sensitivity, linearity and orthogonality 

errors of the simulated measured values was created. The learning process of bias, sensitivity, linearity 

and orthogonality calibration constants is shown on Fig. 1 – Fig. 7, respectively. The convergence 

velocity α was set to 0.0003. 
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Figure 1 Learning procces of constant of 5th 

series 

 

 
Figure 2 Learning procces of constant of 4th 

series 

 

 
Figure 3 Learning procces of constant of 3rd 

series 

 

 
Figure 4 Learning procces of constant of 2nd series 

 

 

 
Figure 5 Learning procces of sensitivity 

calibration constants 

 

 
Figure 6 Learning procces of bias calibration 

constants 
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Figure 7 Learning procces of orthogonality calibration constants 

 
From the illustrated learning processes it is obvious that the most time consuming is the learning 

process of the calibration constants of the highest order, in our case of the constant of the 2nd, 3rd, 4th 

and 5th order corresponding to the nonlinearity elimination. The velocity of the sensor calibration is 

therefore dependent on the velocity of the learning process of this constant. On the other hand the 

main error sources have an origin in the sensor’s bias and sensitivity errors and therefore as can be 

seen on Fig. 8, which illustrates error calculated from the measured data in comparison with the error 

calculated after calibration constants application, the error during the learning process achieves the 

steady state already before the steady state of linearity calibration constants’ steady state achievement. 

 

 
Figure 8 Comparison of errors calculated from measured data and during the learning process 

 
From the picture we can see that the error calculated from simulated uncalibrated data εm varies 

from -0.1327 to 0.155 and during the calibration process after stable stated is achieved the error εc is 

reduced, it varies from -0,0015 to 0.0012, which means a significant improvement of the modeled 

sensor’s characteristics. Moreover the calculated standard deviation of the simulated uncalibrated data 

with the value of 0.0721 was suppressed during the learning process to the value of 0.00048. In this 

case, the error was suppresed about 150 times.  

 

 

3. EXPERIMENT 

 

As the simulation results confirmed correctness of this calibration methodology, experimental 

measurements were performed using the 3-axis simultaneous relax-type fluxgate Vema magnetometer 

with the resolution of 2 nT [6]. The sampling frequency during the measurements was 1 kHz and each 

sample was obtained as an average consisting of 20 samples. Measured data were subsequently 

normalized to 1. Samples was randomized and set of training data was created. The learning process of 

bias, sensitivity, linearity and orthogonality calibration constants during the measurement is shown on 

Fig. 9 – Fig. 15, respectively. The convergence velocity α was set to 0.0003. 
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Figure 9 Learning procces of constant of 5th 

series 

 

 
Figure 10 Learning procces of constant of 4th 

series 

 

 
Figure 11 Learning procces of constant of 3rd 

series 

 

 
Figure 12 Learning procces of constant of 2nd series 

 

 

 
Figure 13 Learning procces of sensitivity 

calibration constants 

 

 
Figure 14 Learning procces of bias calibration 

constants 
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Figure 15 Learning procces of orthogonality calibration constants 

 

From the illustrated learning processes it is obvious that the most time consuming is the learning 

process of the calibration constants of the highest order. The overall velocity of the sensor calibration 

is therefore dependent on the velocity of the learning process of these constants. 

 

 
Figure 16 Comparison of errors calculated from measured data and during the learning process 

 

Fig. 16 illustrates error calculated from the measured data in comparison with the error calculated 

during the calibration process. Also in this case we can see a significant improvement of the sensor’s 

precision, because the error of the measured data εm changes from -0.133 to 0.158 and after the stable 

state achievement the error εc changes only from -0.0059 to 0.0053. The standard deviation of the 

scalar value T was from the value of 3.405 μT eliminated to 0.078 μT. During the experiment, the 

error was suppresed more than 43 times. 
 

Table 1 Overview of calibration constants 

Axis F E D C 

X 0.00174 0.0004 -0.00211 -0.00206 

Y 0.00052 -0.00005 -0.00187 -0.00207 

Z 0.00286 0.00182 0.00452 -0.00224 

 
Table 2 Overview of calibration constants 

Axis B A O 

X 0.06137 1.03453 - 

Y 0.06114 0.95012 0.0135 

Z 0.08323 1.00036 0.0104 

0.0655 
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Tab. 1 nad 2 summarizes calculated calibration constants of the tested Vema magnetometer. The 

deviations from the steady state during the calibration process of this relax-type magnetometer were 

probably caused by the inhomogeneity and non-stationarity of the magnetic field, because 

measurements were performed in the outdoor conditions without utilization of the magnetic shield 

chamber. Other measurement errors can have an origin in the axial asymmetry of used ferro probes 

and in the cross-axis effect. 

 

 

5. CONCLUSION 

 

The theoretical principles of the adaptive attitudeindependent calibration methodology for 3-axis 

sensors of vector physical fields calibration based on the one-layer feedforward neural network 

consisting of three adaptive elements was confirmed by the simulation, during which a very good 

convergence and calibration constants’ estimation was achieved. Simulation results were 

supplemented by the experimental measurements, which also proved the correctness of the proposed 

calibration algorithm. Finally it can be concluded that the main advantages of the presented calibration 

methodology lie not only in the simplicity of the calibration algorithm, attitude independency of the 

sensor during the calibration measurements, no need of non-magnetic calibration platform utilization, 

but also in the calibration speed, precision and undemandingness leading to the effective 

magnetometer calibration constants determination and calibration errors reduction. 
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