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Intensive use of geometrical modelling started with the development of computer graphics and CAD/CAM technologies, 

comprising a wide area of mathematical disciplines. Geometrical modelling is a synthesis of the geometry and computer graphics, 

which enable us to develop complex mathematical models that would be rather difficult to display without using a computer. We 
recognize two basic research methods of geometrical models, the synthetic and the analytic one. The former method makes use of 

geometrical constructions whereas the latter characterizes geometrical objects by numerical data. Both methods have been applied in 

this contribution. 
The aim of this research is to show central cyclides (Dupin´s cyclides) as a special kind of the cyclical elliptical pedal 

surfaces. Firstly, using the method of synthetic geometry, a new class of such surfaces in the 3-dimensional Euclidean space (model 

of the projective space) is defined. Geometrical construction of these surfaces is dependent on the given ellipse and the position of 
the pole P. It is the point at which the pencil of perpendicular planes passes to the plane of the ellipse, wherein the generating circles 

of the surface are lying. The parametric equations of the cyclical elliptical surface are derived applying the method of analytic 

geometry. We classify the surfaces according to the number of generating circles with a zero radius. The evolute of the ellipse 
divides the plane of the ellipse into two areas, Ω1 and Ω 2. The shape of the surface depends on the position of the pole P in the areas 

of Ω1 and Ω2. A surface can have 4, 3 or 2 circles with a zero radius. We then describe the relationship between these surfaces and 

the Dupin´s cyclides, obtained in the case when the pole P is the point on the major axis of the ellipse. Finally, the transformation of 
these surfaces is shown by changing of the orthonormal base in the parameterization of the generating circles of the surface. The 

resulting surfaces obtained by the parametric approach are visualized in the MAPLE program environment. 

K e y w o r d s. cyclical elliptical pedal surfaces, creation, classification, Dupin´s cyclides  

 
1 INTRODUCTION 

 

Several mathematicians attended to the 

investigation of cyclides by different ways [1], [2], 

[3], [4]. A survey of various definitions of cyclide, 

as well as a description of the properties of 

different shapes of cyclides can be found in [5], 

[6]. Our aim is to show the cyclides as a special 

type of cyclical elliptical pedal surfaces. We use 

the analytic geometry of curves and surfaces which 

is well described in [7], [8] and [9]. 

 

2 CREATION OF CYCLICAL ELLIPTICAL 

PEDAL SURFACE AND ITS 

PARAMETERIZATION 

 

2.1 Geometrical way of surface creation 

 

Let us have the ellipse  and the point P 

in the plane  . Let K be the point of the ellipse 

different from a main vertex. F1, F2 are the foci of 

ellipse  . We construct accompanying lines of the 

point K and by the point P perpendicular line r to 

the tangent t of ellipse at the point K. We denote 

trL  , KFrK 11   and KFrK 22  . L is 

the midpoint of 21KK and currently the point on 

the pedal curve of the ellipse  for the pole P (see 

Fig.1). 

        
Fig.1 Situation in the plane   

 

Let k be the circle with the centre L 

passing through points 21 , KK  lying in the plane 

perpendicular to the plane  . The circle k reduces 

to a point (circle with zero radius) if the line r is 

the normal line of ellipse  . If the point K moves 

along the ellipse (except main vertices) then by the 

above described method we get the system of 

circles that are generating circles of cyclical 

elliptical pedal surface.  

The situation in the main vertices is as 

follows: The accompanying lines of the main 
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vertices coincide with the major axis of the ellipse. 

There are two cases: 

(i) If P is not the point of the major axis of ellipse 

then a line r is parallel to the major axis. 

Corresponding points 21 , KK  are points at 

infinity and the cyclical elliptical pedal surface 

is not bounded. This case is discussed in the 

first chapter of the paper. 

(ii) If P is the point of the major axis of ellipse 

then the line r and the accompanying lines of 

the foci coincide with the major axis of the 

ellipse. The intersection points of the line r 

with accompanying lines are points at infinity 

and the cyclical elliptical pedal surfaces are 

bounded. It is shown in the second chapter. 

 

2.2 Parameterization of surface 

 

Let the Cartesian coordinate system (O; x, 

y) in the plane  be the following: the origin O is 

the centre of ellipse  , coordinate axis x is a 

major axis of ellipse and y is a minor axis of 

ellipse, Fig.1. As usual we label as a semi-major 

axis, b the semi-minor axis and e the eccentricity 

of an ellipse. 

An ellipse will be parameterized by a 

parameter u, which is an arc of the spherical view 

of the normal of ellipse  . An ellipse is 

parameterized by vector function  

 

   ,2,0,
)(

sin
,

)(

cos 22















 u

uh

ub

uh

ua
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where function ubuauh 2222 sincos)(  ,                 

 2,0u  is the support function of the ellipse. 

Unit direction vectors of normal lines of the ellipse 

are given by vector function 

 

 2,0,)sin,(cos)(  uuuun .                  (2) 

 

Let P be the point   .0,, 000  yyxP Then for a 

given value of the parameter u the line r has the 

parametric expression 

 

.,sin,cos
00

Rtutyyutxx     (3) 

 

Foci are  0,1 eF   and  0,2 eF  . 

Accompanying lines )(1 uKF  and )(2 uKF  are 

given by 

  ,sin)(cossin 222 uebyuheuaxub        (4) 

and     

  .sin)(cossin 222 uebyuheuaxub         (5) 

 

 Substituting Eq. (3) into Eqs. (4) or (5), 

we express the value of parameter t on the line r 

for the point K1(u), or K2(u). Values t1(u) and t2(u) 

are denoted as the appropriate ones of a parameter 

and we get 
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cos)(sin
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     2,,0 u .                                             (7) 

 

If 0u  and u then we get the major 

vertices, points )0(K  and )(K . Provided that 

00 y , it follows from Eqs. (6) and (7) that if 

0u  and u , the functions 21 , tt  are not 

defined. The limits of both functions for 

 uu ,0  are at infinity. 

The parameterization of a surface means 

to parameterize its generating circles, thus 

parameterize the loci of their centers and to 

determine the radii functions. Centers )(uL  of 

generating circles are points of the pedal curve of 

the ellipse L for the pole P.  

Pedal curve L is parameterized by point 

function 

    







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Substituting (6) and (7) we get 
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                                2,0u .  (8) 
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Radii of generating circles are the values 

of function 

 )()(
2

1
)()(

2

1
)( 1221 ututuKuKuR  

ue

uueuyuxuh

sin

cossin)cossin)(( 2

00


 , 

                           2,,0 u .             (9) 

 

Function in Eq. (9) is not defined for 

0u  and u . The limits of function R for 

0u  and u  are at infinity, therefore the 

surface is not bounded. 

The cyclical elliptical pedal surface is 

parameterized by the point function 

 

        3sincos, enLX vuvuRuvu  , 

                    2,0,2,,0  vu ,     (10) 

in which R(u) is a real function in Eq. (9), 

 1,0,03 e  and functions L(u), n(u) are extended 

by third zero coordinate.  

 

2.3 The loci of points K1 and K2 

 

 Let K1 and K2 be the loci of the points 

)(1 uK  and )(2 uK , where     2,,0 u . 

Coordinates of the points )(1 uK  and )(2 uK  are 

values of functions 

    uutyuyuutxux sin)()(,cos 1010   

(11) 

and 

      uutyuyuutxux sin)()(,cos 2020  ,   

(12) 

 

where 21 , tt  are functions, see Eqs. (6) and (7). 

Substituting Eq. (6) into Eq. (11) or Eq. 

(7) into Eq. (12) and after editing 
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                             2,,0 u .        (14) 

 

It is evident that for )2(0  uu  or u , 

then the limit of the first coordinate function x(u) 

in Eq. (13) is at infinity. It means that the points 

are )0(1K  or )(2 K  are at infinity. The second 

coordinate function of the points )0(1K  and 

)(2 K  is a number 
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by
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2
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 Equally for )2(0  uu  and u  

the limit of the first coordinate function x(u) in Eq. 

(14) is at infinity and therefore points )0(1K  and 

)(2 K  are at infinity. The second coordinate 

function of the points )0(1K  and )(2 K  is a 

number 
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
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2
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 The locus of points K1  (K2 )  fall into two 

curves. The first one is for [π,0]u  and the 

second one for [π2,π]u . Lines with equations 

(15) or (16) are asymptotes of all curves, which we 

get for different positions of the point 

.0,],[ 000  yyxP  In Fig.2 (Fig.3) we illustrate 

the locus K1 (K2) for the choice 

 2,5.0,3,5  Pba . 
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Fig. 2 Disintegrated curve K1  with asymptotes 

 

 

 

Fig. 3 Disintegrated curve K2  with asymptotes 

 
 If a line r is the normal of the ellipse 

passing through the point P, then 21 KK   is the 

point of ellipse  . Such points are exactly as 

many as intersection points of ellipse normal 

passing trough the point P with the ellipse. The 

number of intersection points depends on the 

position of the point P with regard to the evolute 

M of the ellipse  . The evolute is parameterized 

by the point function  
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 2,0u   (17) 

and the equation of the evolute is 

 

         3
2

2
3

2

3

2

ebyax  .                                   (18) 

 

The evolute M divides the plane   into 

two areas. The area 1  and 2 (see Fig.4) is the 

set of the points whose coordinates satisfy the 

inequality 

 

        3
2

2
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2

3

2

ebyax   and      3
2

2
3

2

3

2

ebyax  . 

 

 

 

 
Fig. 4 Divided plane 

 

 In case that P is the point of an area 1 , 

then there exist 4 intersection points of the normals 

of ellipse that are passing through the point P and 

the ellipse. Therefore, we obtain 4 points for which 

21 KK  . 

If P is the point of evolute M, its 

coordinates satisfy the equation (18), and there 

exist 3 intersection points of normals to the ellipse 

passing through the point P and the ellipse  , if P 

is not a singular point of the evolute on a minor 

axis of an ellipse. If P is a singular point there 

exist only two intersection points. In case that the 

point P is the point of the area 2 , then there exist 

2 intersection points. 

 

2.4 Classification of cyclical elliptical pedal 

surfaces 

 

 We will describe surfaces according to a 

number of generating circles with a zero radius, 

thus points. Radii of generating circles are values 

of a function Eq. (9). It is evident that a function 

has a zero value if and only if for some value 

[π2,π][π,0] u  is )()( 21 uKuK  . So the 

cyclical elliptical pedal surface has 

 

(i) 4 generating circles with a zero radius if P is the 

point of the area 1 . In Fig.5 we illustrate a 

section of the surface for 

,3,5  ba  1,5.0P . 
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Fig. 5 Cyclical elliptical pedal surface with 4 

zero generating circles 

 

(ii) 3 generating circles with a zero radius if P is 

the point of the evolute M but not a singular 

point on the minor axis of an ellipse (see 

Fig.6). 

 
 

Fig. 6 Cyclical elliptical pedal surface with 3 

zero generating circles 

 

 

Fig. 7 Cyclical elliptical pedal surface with 2 

zero generating circles 

 

(iii) 2 generating circles with a zero radius if P is 

the point of the area Ω1 or the singular point 

of the evolute on the minor axis of an ellipse. 

In Fig.7 we illustrate a section of the surface 

for ]5,2.4[,3,5  Pba . 

3 CONNECTION OF CYCLICAL 

ELLIPTICAL PEDAL SURFACES WITH 

DUPIN´S CYCLIDES 

 

So far we assumed that the point P is not 

the point on a major axis of an ellipse. In this 

chapter we will assume, that P is the point on the 

major axis. Then ]0,[ 0xP  . Substituting 00 y  

into Eqs. (13) or (14), we evaluate the coordinates 

of the points K1 and K2. Their coordinates are 
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and 
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uxeb
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


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In this case, the function of the first 

coordinate in Eqs. (19) and (20) is continuous on 

the interval [π2,0[ , so the limit of the function for 

0u  and u  equals to functional value, it is 

a real number. Therefore, points )0(),0( 21 KK  and 

)π(),π( 21 KK  are real and the surface is bounded. 

For each parameter [π2,0[u is the distance 

e

xea
uKF

0

11 )(


   and 
e

xea
uKF

0

22 )(


 .  

 

So the set K1 (K2) is a circle, with the 

center at the focus F1 (F2) of an ellipse and its 

radius is
e

xea 0
 and 

e

xea 0
. It means, that 

this cyclical elliptical pedal surface is a central 

Dupin´s cyclide [9] parameterized by the point 

function in Eq. (10), in which the point function is 

 
    0,sincos)(,cos)cos()()( 000 uuxuhuuxuhxu L  

(21) 

and the real function is 
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     ueuhx
e

uR cos)(
1

)( 2

0    

[π2,0[[,π2,0[  vu .                               (22) 

 

Central cyclides are surfaces, which have 

two systems of circles, which are also lines of the 

curvature and two planes of symmetry. The first 

one is the plane   and the second one passes 

through the major axis of an ellipse perpendicular 

to the plane  . We show different types of a 

cyclides depending on the position of the point P. 

In the following surfaces are 4,5  ba . 

For ]0,0[P  we get a symmetric horn 

cyclide (Fig.8). 

 
Fig. 8 Symmetric horn cyclide 

 

When 1P , we get a horn cyclide. 

For ]0,1[P  the surface is illustrated in Fig.9. 

 

 
Fig. 9 General horn cyclide 

 

If P is the singular point of the evolute, 

then the surface is a ring cyclide. Circles K1  and K2 

have in plane  an inner touch (see Fig.10). 

 

 
Fig. 10 Special ring cyclide 

 

Let P be the point between the singular 

point of evolute and the focus of the ellipse, then 

the surface is general ring cyclide (see Fig.11). 

If P is the focus of the ellipse then one 

circle is reduced to this focus. This surface is 

shown in Fig.12. 

 

    
Fig. 11 Ring cyclide        Fig. 12 Ring cyclide 

       for P = [2.1,0]              for P = [e,0] 

 

 
Fig. 13 Spindle cyclide 

 

Spindle cyclide is for a pole 2P . It 

is illustrated in Fig.13 for the pole ]0,5.4[P . 
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4 TRANSFORMATION OF SURFACES 

 
The surface is transformed by changing 

the orthonormal base in the parameterization of 

generating circles of a surface. The orthonormal 

base is formed by vectors 

[π2,0[,)0,sin,(cos)(  uuuun , )1,0,0(3 e .  

We substitute the vector e3 by a vector function 

3sin)(cos)( ete   uu , in which   is 

constant,   2,0  and )0,cos,sin()( uuu t .  

This change corresponds to the revolution of the 

generating circles around diameter )()( 21 uKuK  

by an angle  . 

The change of the size of vectors n(u) and 

e3 presents an affine transformation of the surface. 

Generating circles are transformed into ellipses. If 

we transform only the size of vector e3, we get 

transformed scaled cyclides which are images of 

Dupin cyclides under an affine scalling application 

[10]. 

     

 

       

  
  

 
 

Fig. 14 Transformed cyclides 

 

In Fig.14 there are shown transformed 

cyclides from Fig.8 - 13 for the angle .4/   

5 CONCLUSION 
 

We have shown that Dupin´s cyclides can 

be viewed as a special type of cyclical elliptical 

pedal surfaces. Their shape depends on the 

position of the pole P which is the point of the 

major axis of the ellipse. The analytical 

representation of such surfaces was derived. 
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